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we can apply the same steps as the proof for normally distributed data in Lemma 9, as long as
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with probability at least 1 � � , we have that
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To simplify the equations, if we consider
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E.4 Proof of Theorem 7

We will show that we obtain similar results when the non-zero entries of! are drawn from a
centered subgaussian distribution (see De�nition 5). We restrict ourselves to the case where the
data comes from a normal distribution. Let x1; : : : ; xm � N (0; 
 2I d) and q-sparse! 1; : : : ; ! N be
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from a centered subgaussian distribution with variance� 2, and construct the matrix A 2 Cm� N

so that akj = exp(ihxk ; ! j i ). Note that we can directly apply the result of Lemma 1 to bound
the �rst source of error. We provide bounds on the mutual coherence ofA by bounding the
separation quantities.
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Then, with probability at least 1 � 2� , we have
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To proceed, we prove the following lemmata.

Lemma 14. Given ! 1; : : : ; ! N 2 Rd, assume that the data pointsx1; : : : ; xm are i.i.d. sampled
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then with probability at least1 � � with respect to the draw of thex0
j s, the mutual coherence ofA

satis�es
� A � 2� max : (142)

Proof. Since the features are complex exponential, the norm of each is column is
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where we used the characteristic function of the Gaussian distribution. In addition, we have that
Varx [akj a?

k` ] � 1 almost surely. Given that xk 's are i.i.d., we can apply Bernstein inequality to
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The rest follows from the arguments in the proof of Lemma 9. �
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This analysis is similar to the Gaussian case; however, since we do not have access to
the probability distribution for ! , we use properties of subgaussian distributions to obtain
concentration results for the key quantities
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j 6= `

� j` ; � min := min
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� j` : (145)

Lemma 15. Let ! 1; : : : ; ! N be a collection ofq-sparse i.i.d. random vectors inRd with arbitrary
supports where their nonzero entries are i.i.d. subgaussian. For any0 < � < 1 de�ne
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Proof. De�ne u = k! 1 � ! 2k2. Let S1 and S2 denote the support of ! 1 and ! 2, respectively,
each with cardinality q. De�ne
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Let Y , Y1, and Y2 be the �rst, second, and third terms in the above expression, respectively, and
note that they are conditionally independent givenS1; S2. By the �rst part of Lemma 3, and the
fact that Y , Y1, and Y2 are sums of squared ofSG(2� 2) random variables, it holds that [24]
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by noting that we can remove the conditioning given that the parameters ofu are uniformly
bounded irrespective of the location of the nonzero entries in! 1 and ! 2.
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Setting � = (1 � t)E[u] and � 0 = (1 + t)E[u], yields
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Setting the RHS of above to1 � � establishes the stated result. �
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Now we prove Lemma 13.

Proof. We use the notation u = k! 1 � ! 2k2 throughout. We need to show that

� A � 2� max �
4

p
41(2s � 1)

(155)

holds with high probability. Conditioned on the event from Lemma 15, which does not occur
with probability at most � ,
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Similarly, we have conditioned on the above event,
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Corollary 7.1. In the case where we haveE[k! 1 � ! 2k2] = 2 q� 2, which occurs for many
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then the bounds become
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